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Changes in the molecular structure and composition of interpenetrating polymer networks (IPNs) can be
used to tailor their properties. While the properties of IPNs are typically different than polymer blends, a
clear understanding of the impact of changing polymerization sequence on the physical properties and the
corresponding molecular bonding is needed. To address this issue, a data mining approach is used to identify
the change with polymerization sequence of tensile and rheological properties of acrylate-epoxy IPNs. The
experimental approach used to study the molecular structure is high throughput Fourier transform infrared
(FTIR) spectroscopy. Analysis of the FTIR spectra of IPNs synthesized with different polymerization
sequences leads to an understanding of the molecular bonding responsible for the tensile and rheological
properties. From the interpretation of the wavenumber bands and associated molecular bonds, we find that
the polymerization sequence most affects hydrogen bonding and aromatic ring bond energies. This work
defines the relationships between chemistry, structure, processing, and properties of the IPN samples.

1. Introduction

Combinatorial experiments aim to create large amounts
of data and information, which results in challenges in
searching the data to find the “hidden” information.1,2 Most
studies of combinatorial libraries focus on the results after
the experiment is complete. However, it is equally important
to understand the pathway or steps achieved before a
particular chemical combination with desired characteris-
tics is formed, from which one can glean information on
mechanisms associated with the formation of the target
chemistry. In this paper we demonstrate how data mining3

integrated into the screening of structural data from combi-
natorial polymer libraries can be used to extract information
about the “pathway” of developing targeted characteristic
information that otherwise would be missed by simple
inspection of screening data. By coupling informatics with
high throughput screening data we show how we can rapidly
indentify the impact of polymerization sequence on molecular
bonding and physical properties of interpenetrating polymer
networks (IPNs).

The properties of acrylate-epoxy IPNs have been previ-
ously analyzed using data mining, specifically principal
component analysis (PCA).2,4 In those studies, the primary
focus was on rheological and tensile properties of the IPNs,
with only the conversion of the monomers to polymers as

determined by Fourier transform infrared (FTIR) spectro-
scopy considered and correlated to other properties. The
majority of the FTIR spectra was ignored. FTIR spectra are
a rich source of information as has been shown before with
polyanhydrides.5 This work continues both of these prior
analyses by applying the methodologies we developed for
analyzing FTIR spectra of polyanhydrides to the IPN
samples, where the IPN samples contain different amounts
of epoxy and acrylate. These two monomers have different
polymerization mechanisms, and the properties of the IPNs
are a strong function of the polymerization sequence of the
co-monomers.6

The properties of IPNs arise from a permanent entangle-
ment between the polymer networks, and in “ideal” IPNs
there are no chemical bonds between the polymers.7-9 IPNs
typically have material properties that are different when
compared with the homopolymers or blends of polymers.
The structure-property relationships of the IPNs can be
complicated by phase separation,10 which depends on the
thermodynamic compatibility of the polymers and the
reaction kinetics of the polymerization, as the pre-exis-
tence of one polymer network can affect the polymerization
rate of the second polymer.11 In this work, the IPNs were
synthesized using a photoinitiated free radical polymerization
of a diacrylate and a thermally initiated cationic difunctional
epoxy polymerization. The polymerization sequence was
varied from photoinitiated first to thermally initiated first,
thereby changing the polymerization order from acrylate first
to epoxy first.

Data mining is employed because we want to quantify the
change in properties due to polymerization sequence and
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identify the bonding responsible for the different properties.
In this work, the entire FTIR spectra composed of nearly
two thousand data points is analyzed, in addition to the 40
properties from tensile and rheometry experiments. All of
these data types exist for multiple samples at each of the
eight compositions and polymerization sequence combina-
tions used. PCA is the data mining method employed here
because it reduces data dimensionality by redefining the axes
so that they correspond with the directions of most variance,
where these new axes or principal components (PCs)
correspond with the eigenvectors of the original data’s
covariance matrix.12-14 While as many PCs exist as dimen-
sions of the original data, typically a few PCs are sufficient
to capture the majority of the system’s information. By
converting the data into the dimensionally reduced PCA
space, we can more easily differentiate the differences due
to changing composition versus changing polymerization
sequence, with the differences clearly aligned with the new
axes. The input data set is decomposed into two matrices of
interest: scores and loadings. The loadings matrix defines
the new axes of the dimensionally reduced data set, while
the scores matrix describes the samples in the PC space.
Numerous examples of the application of data mining for
materials problems exists in the literature.15-22 However,
the use of a multivariate analysis with polymer systems has
been more limited.23-27 With PCA, the most important
features of the FTIR spectra can be identified, and the peak
shifts and non-symmetries in the peaks between the samples
can be quickly determined. We can identify which wave-
numbers correspond most closely with the composition of
the IPNs and which are most changed because of the
polymerization sequence. While multivariate analyses of
spectral data have previously been attempted,28-31 the
uniqueness of the work presented here is in the type of
system studied and the level of analysis presented.

2. Experimental Section

2.1. Materials and Conversion by FTIR. IPNs were
synthesized using a photoinitiated free radical polymerization
of a diacrylate and a thermally initiated cationic difunctional
epoxy polymerization. The materials used for the acrylate
polymerization were poly(ethylene glycol) 200 diacrylate
(SR-259, Sartomer, Exton, PA) and free radical initiator R,R-
dimethoxy-R-phenylacetophenone (Irgacure 651, Ciba Spe-
cialty Chemicals, Basel, Switzerland). The materials used
for the epoxy polymerization were a multifunctional epoxy,
bisphenol A-epichlorohydrin epoxy resin (EPSON 828,
Resolution Performance Products, Houston, TX), and a
proprietary thermal activated cationic catalyst, ammonium
antimony hexafluoride (XC-7231, King Industries, Norwalk,
CT). The chemical structures are shown in Figure 1.

The photoinitiator and catalyst were added at a ratio of
1% to the base resin. The photopolymerization was per-
formed by passing the samples on a conveyer under a high
intensity UV light source multiple times, while the thermal
polymerization followed a thermal cycle of 1 h at 100 °C,
2 h at 120 °C, and 2 h at 160 °C in a laboratory oven. An
FTIR spectrophotometer with diamond ATR (Thermo Nico-
let, Waltham, MA) was used to measure IR absorption.

Two sets of IPN samples for measuring physical proper-
ties, one set rectangular in shape and the other dog-bone
shaped, were prepared with varying composition and with
different reaction sequences. The rectangular shaped samples
were used for rheological measurements, and the dog-bone
shaped samples for evaluation of tensile properties and
hardness. In addition, small sections of the samples were
evaluated for conversion and residual heats of reaction using
attenuated total reflectance FTIR spectroscopy, photo dif-
ferential scanning calorimetry (pDSC), and modulated dif-
ferential scanning calorimetry (mDSC). A flowchart of the
evaluation techniques with example spectra is shown in Figure
2, with a full description of the methods and equipment used
to measure the properties described elsewhere.6

2.2. Data Description. The primary data set used in this
work contained FTIR spectra for eight different sample types
composed of epoxy and acrylate: 25, 50, 75, and 100%
acrylate with acrylate reacted prior to epoxy, and 0, 25, 50,
and 75% acrylate with epoxy reacted first. The data set was
organized as shown in Figure 3, where the descriptors include
every wavenumber from the FTIR spectra at 4 cm-1 intervals
that are otherwise continuous and not discrete. The total
number of descriptors used was 1868, with the values in the
data set being the absorbances at each wavenumber. The data
was not scaled as all units are identical, and larger impact
should be given to the larger differences between high
intensity peaks. For each polymerization sequence and
composition pair, several samples were created, and FTIR
analysis was performed on each to minimize and estimate
the error. In the PCA analysis, any abnormalities in a
particular sample were easily identified by further examining
the outliers. For all of the composition-polymerization
sequence pairs, multiple spectra exist, resulting in the data
set actually including 17 samples.

The samples differ in two major ways: composition and
polymerization sequence. An analysis of FTIR spectra by
visual inspection or by peak identification can be useful in
identifying some differences between samples at a qualitative
level, and then attributing these differences to either a change
in composition or polymerization sequence. However, too
many data values exist to perform a complete analysis of
the entire spectra in an efficient manner. The most common
strategy is to examine only the wavenumbers that are known
to correspond to reactive moieties, while vast regions of the
spectra are typically ignored. In some cases reactive sites

Figure 1. Chemical structures of the acrylate, polyethylene glycol
200 diacrylate (PEG200DA), SR-259; the photoinitiator, R,R-
dimethoxy-R-phenylacetophenone (DMPA), Irgacure 651; and the
epoxy, diglycidal ether of bisphenol A (DGEBA), Epon 828.
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can have absorbances at multiple wavenumbers, and tradi-
tional analysis of these multiple wavenumbers can lead to
conflicting conclusions. Using a multivariate analysis on the
entire spectra, a complete analysis of the data can be
performed and differences between samples can be attributed
to composition or polymerization sequence.

The other data set considered in this work contains values
of the measured physical properties, from experimental
results on rheological and tensile testing. This data set also
contains information on conversion and residual reactions,
as well as information about the samples. The compositions
and polymerization sequences are the same as in the FTIR
data set, with three to seven samples tested for each sample
type. The data set contained a total of 24 samples and 40
parameters, with the parameters defined in the appendix.

3. Results

3.1. Analysis of Physical Properties. The data set
composed of rheological and tensile measurements was
analyzed to explore the impact of polymerization sequence
on the physical characteristics of the IPN samples. The data
was normalized by first mean centering each descriptor and
dividing each value by the standard deviation for that
particular descriptor. This results in each set of descriptor
values having a mean of zero and a unit variance so that no
impact because of different units of descriptors occurs. Figure
4 shows the scores plot, with each point representing the
average scores value of the samples at the particular set of
conditions, and a loadings plot from the analysis of this data
set, with the property labels in the loadings plot defined in
the appendix. The percent labeled on the axes corresponded
to the amount of variance of the total data set captured by
the respective axes. The two reaction sequences are labeled
as “A” (acrylate polymerized first) and “E” (epoxy poly-
merized first). In Figure 4, the differences between poly-
merization sequence can be clearly observed, with PC1
differentiating the two sequences with sequence A having a

negative PC1 value and sequence E having a positive PC1
value, while PC2 captures the differences due to composition,
as the PC2 value decreases with increasing acrylate content.

Having identified the physical meaning of the axes, the
relationships between composition and polymerization se-
quence and the rheological/tensile properties can be identified
because the scores and loadings plots have the same axes.
Therefore, the interpretation of PC1 capturing differences
due to polymerization sequence and PC2 capturing differ-
ences due to composition was applied to the loadings plot,
with the interpretations listed in Table 1. Understanding what
the axes represent in Figure 4 allows for tailoring of the IPNs
for specific properties. For example, the storage modulus (G′)
has a significant negative PC1 value and almost no PC2
value, meaning that changing the acrylate/epoxy composition
has minimal effect on G′, while polymerizing acrylate prior
to epoxy increases G′ and polymerizing epoxy first decreases
G′. As another example, the loss modulus (G′′) has a negative
PC2 value but minimal PC1 value. Therefore, increasing
acrylate composition increases G′′ and increasing epoxy
percent decreases G′′, while changing the order of poly-
merization has little effect. This analysis can be carried out
for all 40 properties so that the relationships between compo-
sition, polymerization sequence, and mechanical properties
can be identified beyond what is possible without data
mining.

The ability to quantify changes in properties such as G′
and G′′ because of composition and reaction sequence is very
useful in IPN design. Additionally, these results identify the
trade-offs needed to improve a particular property. In addition
to showing the correlations between the descriptors, the
loadings plot shows which properties have the largest effect
on the scores plot, as the properties with large magnitudes
in PC values have more relevance in determining the PC values
of the scores plot. This approach defines chemistry-processing-
property relationships for the IPN samples, while the next
section relates chemistry and processing with structure.

Figure 2. Flowchart and sample spectra of evaluation techniques applied to combinatorial samples created simultaneously from batteries
of varying composition. Some of the properties and parameters determined by each technique are indicated in the chart.
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3.2. Analysis of FTIR Spectra. We analyzed the FTIR
spectra to identify the nature of the molecular bonding
responsible for the change in properties with changing
polymerization sequence. With the identification of these
bonding characteristics, we can then fully develop structure-
chemistry-processing-property relationships. Scores and load-
ings plots of the PC analysis of the FTIR data is shown in
Figure 5. As with the analysis of physical properties, the

axes can be interpreted in terms of composition and poly-
merization sequence. In this case PC1 is related to composi-
tion and PC2 is related to polymerization sequence. As the
PC1 value increases, the acrylate composition increases for
both polymerization sequences, while the differences between
reaction sequences are captured by PC2.

PC1 describes 77.6% of the variance in the data, while
PC2 describes 17.2% of the variance, and thus using only
two dimensions instead of the initial 1868 dimensions we
are able to capture 94.8% of the variance existing in all of
the spectra. On the basis of the ratio between PC1 and PC2,
it is found that compositional effects as related to FTIR
spectra (molecular bonding) are approximately four times
more significant than polymerization sequence effects for the
data analyzed.

Table 2 shows how a single PCA plot can be used to
condense the data contained in many spectra into informa-
tion that more fully describes the system. For example,
based on the distance from the origin the relative variation
in absorbance at a specific wavenumber can be used to
describe the system, while the width and symmetry of a
loop describes the change in peak heights and wavenum-
bers. A graphical representation of this interpretation is
presented in Figure 6, where the impact due to composition
versus polymerization sequence is determined by the
trajectory of the loops. This figure shows a loop with a
trajectory along both PC1 and PC2, indicating that this
peak changes with both composition and polymerization
sequence. Conversely, the loadings plot displays the peak
at 1724 cm-1 (associated with the CdO stretch in the
acrylate) primarily along PC1, meaning this peak changes
with changing composition but not with polymerization
sequence. This result demonstrates an approach for
identifying relationships between structure, processing, and
chemistry.

4. Discussion

By analyzing physical properties, we were able to
develop chemistry-processing-property relationships by
quantifying the change in properties as a function of IPN
composition and polymerization sequence. Additionally,
the analysis of the FTIR spectra led to the development
of structure-chemistry-processing relationships, as the
relationships between molecular bonding with composition
and polymerization sequence were identified. This infor-
mation leads to the identification of structure-chemistry-
processing-property relationships because we have iden-
tified how properties change with composition and
polymerization sequence, and identified the molecular
bonding responsible for the change in properties. In this
section, we discuss the specific change in molecular
bonding with different polymerization sequence that was
identified through the analysis of FTIR spectra. Table 3
lists the wavenumbers where peaks in the FTIR spectra
exist and wavenumbers at loop apexes identified from the
loadings plot. The molecular bonds, associated monomers,
and whether the bond is changed during polymerization
are listed in the table.

Figure 3. Data set organization for the FTIR spectra of samples
with varying compositions and polymerization sequences. Differ-
ences clearly exist because of both effects, but quantifying the
degree of change due to each effect is difficult because the impact
of changing composition is not consistent between polymerization
sequences, and likewise the impact of changing polymerization
sequence is not consistent between compositions.
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The bonds that participate in the polymerization of the
acrylate or epoxy monomers are indicated with a “yes”
in the reactive column in Table 3. The large differences
in the spectra as indicated by the loadings plot are not at
these reactive sites, but in areas that are typically viewed

as “less interesting.” Therefore, using PCA we have
identified the peaks that most fully differentiate the
samples, which would be ignored otherwise. None of the
reactive bond regions figure as prominently in the loadings
plot although this finding is somewhat expected as the

Figure 4. (a) Scores plot of analysis primarily consisting of tensile and rheological properties. On the basis of the trends of the values, PC1
is identified as capturing differences due to reaction sequence, with +PC1 being associated with epoxy polymerized first and -PC1 being
associated with acrylate being polymerized first. Likewise, PC2 captures differences due to composition, with increasing acrylate content
leading to more negative PC2 value. (b) Loadings plot of the analysis, with the same axes as the scores plot. Having identified the meaning
of the axes, the relationship between processing, composition and properties is clearly defined.

Table 1. Relationship between Properties, Composition and Processing, As Described by Figure 4

compositional effect reaction sequence effect impacted properties

increase with acrylate none L, G′′, aE
increase with acrylate increase with epoxy first s, E, TgI
increase with acrylate increase with acrylate first m Rh, IA Rh, IE1508 Rh, aE1606 Rh
increase with epoxy none m, w, e, TgF, IA, DHR, DHR Rh, IE1508
increase with epoxy increase with epoxy first tan d, Tg, TgF Rh, aA Rh, TI, aE1606, aE1508 Rh, IE914 Rh
increase with epoxy increase with acrylate first H, dh/dtP, TP, TP Rh, IE914, IE1606
none increase with epoxy first TgI Rh, aA, aE1508
none increase with acrylate first G′, TI Rh, aE Rh, dh/dtP Rh, IE1606 Rh

Figure 5. (a) Scores plot of the FTIR spectra from Figure 3. PC1 is identified as capturing differences in the spectra because of composition,
while PC2 captures differences because of changing polymerization sequence. (b) Loadings plot corresponding with the FTIR spectra. The
numbers labeled are the wavenumbers from the FTIR spectra. Further interpretation of this figure is provided in Table 2, with the term
“loop” referring to the continuous points starting and ending at the origin.
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polymerization was driven to completion and these
reactive bonds should be completely consumed or formed
in the resulting polymers. The only expected exception
to this would be if one of the polymerizations restricted
the complete reaction of the other monomer resulting in
residual monomer, although that was not found to be the
case for these samples.

The important wavenumbers from loop apexes from the
loadings plot are equally divided in importance between
PC1 (composition), PC2 (polymerization sequence), or
both. An example is the loop apexes at 1508 cm-1 and
829 cm-1, which together correspond to para-substituted
aromatic CdC bonds. The importance of this region to
both PC1 and PC2 on the loadings plot suggests there
may be differences in the samples’ spectra related to
differences in aromatic ring bonding energies, which are
most likely due to configurations or constrain of the
polymer,32 as the chemistry of the aromatic ring is not
affected by polymerization or polymerization sequence.

The changes in bond energies at 1228 cm-1 (C-O in
epoxy) and 2922 cm-1 (CH in both) with reaction
sequence indicate that the reaction sequence affects
hydrogen bonding. These differences in molecular ordering
with polymerization sequence as indicated by changes in
the FTIR spectra have previously been demonstrated to
translate to differences in physical properties and mor-
phology.6 It is significant that differences in the FTIR
spectra that can be attributed to differences in polymer-
ization sequence can be correlated to changes in physical
properties.

The impact of this work is that we are able to identify
the effects resulting from changing polymerization se-
quence as compared to varying the composition by
analyzing the FTIR spectra of the samples. Another
interesting take-away message is that if only the reactive
peaks that are typically considered are analyzed, important

Table 3. Wavenumbers Identified from FTIR Spectra and from
PCA Loadings Plot with Associated Bond, Associated
Monomer, Whether the Bond Changed during Polymerization,
and Whether the Peak Was Identified from PCA

wavenumber,
cm-1 bond monomer reactive

loadings
plot

807 CH2) twist epoxy
829 para-substituted aromatic epoxy both
865 epoxide epoxy yes
916 epoxide epoxy yes
1103 C-O or C-C epoxy PC2
1163 C-X region Both PC1
1228 C-O or C-C epoxy PC2
1407 CHdCH2 Acrylate yes
1508 aromatic CdC, CH3 bend epoxy both
1606 aromatic CdC epoxy
1635 acrylate CdC Acrylate yes
1726 CdO stretch Acrylate PC1
2922 sp3 CH Both PC2

Table 2. Features from Loadings Plot (Figure 5b) and the
Interpretation of These Features

feature interpretation

PC1 PC1 increases with
increasing acrylate

PC2 PC2 is related to
polymerization sequence

length of peak loops,
magnitude of PC

variance in intensity of
peak between samples

trajectory impact of composition vs
polymerization sequence

width of loop captures peak
shift between samples

asymmetry of loop describes change in peak
shape between samples

wavenumber sequence
in loop

direction the peaks
shift relative to wavenumber

Figure 6. Demonstration of how the symmetry and width of a loop can be used to understand the relationship between the various spectra
using one curve instead of many curves. Each point in the PCA loadings plot represents the spectra of all of the samples at the respective
wavenumber. The loadings plot not only condenses the information on peak shift, peak intensity change, and differences between chemistries
and polymerization sequences, but also ranks the peaks in terms of information contained.
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information is missed. When reviewing the input data,
clearly differentiating the changes in spectra because of
changing composition or polymerization sequence is
difficult without the use of data mining. We were able to
quantify such a relationship between composition and
polymerization sequence with FTIR spectra by studying
the trajectory of a loop on a PCA loadings plot. In effect,
a tool for the visualization of numerous spectra has been
developed which quickly identifies spectral bands, which
change most between samples.

5. Conclusions

We have analyzed FTIR spectra and rheological and
tensile properties of acrylate/epoxy IPNs. Using a mul-
tivariate analysis, we were able to identify the wavenum-
ber bands that are most impacted by the composition or
polymerization sequence of the samples and to quantify
this change. By visualizing the spectra in a manner based
on the variance between the samples, we could identify
which wavenumber regions are most impacted by the
different effects (composition or polymerization sequence)
and correlate this effect to related molecular bonding. We
identified hydrogen bonds and aromatic ring bond energies
as being largely impacted by changing the order of
polymerization. By identifying the molecular bonding and
physical properties affected by composition and polym-
erization sequence, the impact of processing on properties
can be described and the responsible molecular bonding
identified. This work builds a linkage between structure,
chemistry, processing, and properties of IPN samples and
builds a framework for rationally designing IPNs.

Acknowledgment. The author acknowledges support
from 3M Corporation, the Institute of Combinatorial
Discovery at Iowa State University, the National Science
Foundation International Materials Institute Program for
the Combinatorial Sciences and Materials Informatics
Collaboratory (CoSMIC-IMI), Grant DMR--08-33853; the
Office of Naval Research MURI program for Novel
Vaccines: Targeting and Exploiting the Bacterial Quorum
Sensing Pathway, award number N00014-06-1-1176.

Appendix

Definition of Physical Properties

Abbreviation Description
xa Acrylate fraction
E Young’s modulus
e Strain at peak (%)
s Stress at peak (MPa)
H Hardness
M Mass of sample for mDSC from tensile specimens
TgI Tensile sample initial Tg during ramp up, °C
TgF Tensile sample final Tg during ramp down, °C
∆HR Tensile sample residual nonreversible reaction heat,

J/g
TI Tensile sample reaction initiation temperature, °C
TP Tensile sample reaction peak temperature, °C
dh/dtP Tensile sample peak reaction rate, W/g
RE Tensile sample epoxy conversion from residual

reaction heat
IE 914 Tensile sample IR absorbance of epoxy at 914 cm
IE 1606 Tensile sample IR absorbance at 1606 cm-1. This is a

reference band for epoxy.

IE 1508 Tensile sample IR absorbance at 1508 cm-1. This is a
reference band for epoxy.

IA Tensile sample absorbance of the acrylate peak at
1635 cm-1

aE 1606 Tensile sample conversion of epoxy using absorbance
at 1606 cm-1 as a reference.

aE 1508 Tensile sample conversion of epoxy using absorbance
at 1508 cm-1 as a reference.

aA Tensile sample acrylate conversion based on
absorbance at 1635 cm-1.

L Thickness of the tensile sample at the dogbone neck
(mm)

W Width of the tensile sample at the dogbone neck (mm)
Tg Glass transition temperature determined by rheometry

(°C)
tan δ tan delta
G′ Storage modulus determined by rheometry
G′′ Loss modulus determined by rheometry
mRh Mass of the sample used for mDSC taken from the

rheology sample (mg)
TgI Rh Rheology sample initial Tg during ramp up, °C
TgF Rh Rheology sample final Tg during ramp down, °C
∆HR Rh Rheology sample residual nonreversible reaction heat,

J/g
TI Rh Rheology sample reaction initiation temperature, °C
TP Rh Rheology sample reaction peak temperature, °C
dh/dtP Rh Rheology sample peak reaction rate
aE Rh Rheology sample epoxy conversion from residual

reaction heat
IE914 Rh Rheology sample IR absorbance of epoxy at 914 cm-1

IE 1606 Rh Rheology sample IR absorbance at 1606 cm-1. This is
a reference band for epoxy.

IE 1508 Rh Rheology sample IR absorbance at 1508 cm-1. This is
a reference band for epoxy.

IA Rh Tensile sample absorbance of the acrylate peak at
1635 cm-1

aE 1606 Rh Rheology sample conversion of epoxy using
absorbance at 1606 cm-1 as a reference

aE 1508 Rh Rheology sample conversion of epoxy using
absorbance at 1508 cm-1 as a reference

aA Rh Rheology sample acrylate conversion based on
absorbance at 1635 cm-1
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